A Wireless Signal Denoising Model for Human Activity Recognition
نویسندگان
چکیده
منابع مشابه
A New Ontology-Based Approach for Human Activity Recognition from GPS Data
Mobile technologies have deployed a variety of Internet–based services via location based services. The adoption of these services by users has led to mammoth amounts of trajectory data. To use these services effectively, analysis of these kinds of data across different application domains is required in order to identify the activities that users might need to do in different places. Researche...
متن کاملMixture-model-based signal denoising
This paper proposes a new signal denoising methodology for dealing with asymmetrical noises. The adopted strategy is based on a regression model where the noise is supposed to be additive and distributed following a mixture of Gaussian densities. The parameters estimation is performed using a Generalized EM (GEM) algorithm. Experimental studies on simulated and real signals in the context of a ...
متن کاملContextual Hidden Markov Tree Model for Signal Denoising
The hidden Markov tree (HMT) model is a novel statistical model for signal and image processing in the wavelet domain. The HMT model captures the interscale persistence property of wavelet coefficients, but includes only a tiny intrascale clustering property of wavelet coefficients. In this paper, we propose the contextual hidden Markov tree (CHMT) model to enhance the clustering property of th...
متن کاملDynamic signal segmentation for activity recognition
Activity recognition is an essential task in many ambient assisted living applications. Activities are commonly recognized using data streams from onbody sensors such as accelerometers. An important subtask in activity recognition is signal segmentation: a procedure for dividing the data into intervals. These intervals are then used as instances for machine learning. We present a novel signal s...
متن کاملAn Efficient Method for Knock Signal Denoising in Spark Ignition Engine
One of the factors that affects the efficiency and lifetime of spark ignited internal combustion engine is “knock”. Knock sensor is a commonly used to detect this phenomenon. However, noise, limits detection accuracy of this sensor. In this study, Empirical Mode Decomposition (EMD) method is introduced as a fully adaptive signal-based analysis. Then, based on weighting decomposition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2017
ISSN: 2475-8841
DOI: 10.12783/dtcse/aics2016/8178